lexicographic ordering - ορισμός. Τι είναι το lexicographic ordering
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι lexicographic ordering - ορισμός

GENERALIZATION OF THE WAY THE ALPHABETICAL ORDER OF WORDS IS BASED ON THE ALPHABETICAL ORDER OF THEIR COMPONENT LETTERS
Lexicographical order; Ordering of lexicographic type; Lexicographic ordering; Lexiographic Order; Reverse lexicon; Lexicographical ordering; Colexicographical order; Colex; Colex order; Colex ordering; Lexicographical sort; Reverse lexicographic order; Lexical order; Lexigraphical order; Lexigraphic order; Quasi-lexicographic order; Colexicographic order; Lexicographically; Lexicographic sort
  • Orderings of the 3-[[subset]]s of <math>\{1, \ldots, 6\},</math> represented as sets of red squares, increasing sequences (in blue), or by their [[indicator function]]s, converted in [[decimal notation]] (in grey). The grey numbers are also the rank of the subsets in all subsets of <math>\{1, \ldots, 6\},</math> numbered in colexicographical order, and starting from 0. The lexicographical (lex) and colexicographical (colex) orders are on the top and the corresponding reverse orders (rev) on the bottom<br>One passes from an order to its reverse order, either by reading bottom-up instead of up-bottom, or by exchanging red and white colors.
  • inversion vectors]] (in red) of permutations in ''colex'' order are in ''revcolex'' order, and vice versa.

Lexicographic order         
In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a totally ordered set.
Shortlex order         
VARIANT OF LEXICOGRAPHIC ORDER THAT SORTS SHORTER STRINGS FIRST
Length-plus-lexicographic ordering; Shortlex; ShortLex
In mathematics, and particularly in the theory of formal languages, shortlex is a total ordering for finite sequences of objects that can themselves be totally ordered. In the shortlex ordering, sequences are primarily sorted by cardinality (length) with the shortest sequences first, and sequences of the same length are sorted into lexicographical order.
Path ordering (term rewriting)         
IN TERM REWRITING, A WELL-FOUNDED STRICT TOTAL ORDER (>) ON THE SET OF ALL TERMS
Recursive path ordering; RPO (term rewriting); LPO (term rewriting); MPO (term rewriting); Multiset path ordering; Lexicographic path ordering
In theoretical computer science, in particular in term rewriting, a path ordering is a well-founded strict total order (>) on the set of all terms such that

Βικιπαίδεια

Lexicographic order

In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a totally ordered set.

There are several variants and generalizations of the lexicographical ordering. One variant applies to sequences of different lengths by comparing the lengths of the sequences before considering their elements.

Another variant, widely used in combinatorics, orders subsets of a given finite set by assigning a total order to the finite set, and converting subsets into increasing sequences, to which the lexicographical order is applied.

A generalization defines an order on a Cartesian product of partially ordered sets; this order is a total order if and only if all factors of the Cartesian product are totally ordered.